Mariya dmitrievna
?>

Диагональ ac параллелограмма abcd образует с боковой стороной cd прямой угол. найдите площадь параллелограмма abcd, если известно, что ac=6√3, а ∠cad=30° 99 б)

Геометрия

Ответы

Владимирович_Роман
Треугольник acd прямоугольный
cd/ca = tg(30°)
cd = ca*tg(30°) = 6√3*1/√3 = 6
S(abcd) = cd*ca = 6*6√3 = 36√3

Диагональ ac параллелограмма abcd образует с боковой стороной cd прямой угол. найдите площадь паралл
irkm8
ответ действительно номер 3, решается это все очень просто:
есть неравенство вида x^2-0,1x<0,
исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - >
x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - >  x^2-0,1x<0 при x ∈ (0;0,1) 
avanesss
Углы, образуемые диагоналями ромба с одной из сторон - это два угла в прямоугольном треугольнике, одном из 4 прямоугольных треугольников, на которые делит ромб его диагонали.
Сумма всех углов треугольника = 180. Получаем:
7*х + 11*х + 90 = 180
18*х = 90
х=5
значит углы треугольника равны 7*х=7*5=35 градусов
11*х=11*5=55 градусов
диагонали ромба делят его углы на два равных угла. Значит получаем, что у ромба такие угла:
35*2 = 70 градусов
55* 2 = 110 градусов
Углы ромба равны 70, 70, 110, 110 градусов (противоположные углы равны)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагональ ac параллелограмма abcd образует с боковой стороной cd прямой угол. найдите площадь параллелограмма abcd, если известно, что ac=6√3, а ∠cad=30° 99 б)
Ваше имя (никнейм)*
Email*
Комментарий*