Пусть К - точка пересечения хорды AC и диаметра BD.
OK=KB=R\2
OA=OB=OC=OD=R=AB=BC
AD=BD=корень((корень(3)*R\2)^2+(3*R\2)^2)=корень(3)*R
AK=BK=корень(3)\2*R
cos (KOA)=(R\2)\R=1\2
угол KOA=угол OBA=угол OBC=60 градусов
угол ФИС=60+60=120 градусов
В выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол ADB=180-120=60 градусов
Угол BAD= углу BCD=180\2=90 градусов
градусные меры дуг AB, BC, CD, AD... соотвественно равны углвой мере углов AOB(=60 градусов), BOC (=60 градусов), COD(180-60=120 градусов)
AOD (=120 градусов)
1) Пусть т.К - пересечение АС и ВД. Примем ВК за х. Тогда ДК=3х.
2) Из подобия треугольников АВК и АДК: АК/ДК=ВК/АК, отсюда АК^2=ВК*ДК=х*3х=4х^2
3) Из треугольника АВК: АВ^2=ВК^2+АК^2=4х^2, отсюда АВ=2х. Получается, что катет ВК равен половине гипотенузы АВ, значит угол ВАК=30 градусов, тогда:
- угол АВК=180-ВАК-АКВ=60,
- угол АВС=2АВК=120
- углы ВАД и ВСД = 90, т.к. опираются на диаметр
- угол АДС = 360-120-2*90=60
4) градусная мера дуги равна половине вписанного угла, тогда:
- дуга АВ=АДВ/2=АДС/4= 60/4=15
- дуга ВС=ВДС/2=АДС/4=60/4=15
- дуга СД=СВД/2=СВА/4=120/4=30
- дуга АД=АВД/2=АВС/4=120/4=30
Поделитесь своими знаниями, ответьте на вопрос:
Основа піраміди – трикутник зі сторонами 2 см, √3 см і 2 см. бічні ребра піраміди утворюють з площиною основи кути 60°. знайти об’єм піраміди.
Боковое ребро наклонено к плоскости основания под углом 60 градусов.
Примем проекцию точки S на основание за О, середину АС за Д.
ВД = √(2² - (√3/2)²) = √(16-3)/4) = √13/2.
Площадь основания So = (1/2)AC*ВД = (1/2)*√3*(√13/2) = √39/4.
Так как боковые рёбра имеют одинаковый угол наклона к основанию, значит, они и их проекции на основание равны между собой.
АО = R = (a²b)/(4S) = (2²*√3)/(4*(√39/4)) = 4√13/13.
Высота Н пирамиды, как катет против угла в 60 градусов, равна:
Н = R*tg 60° = 4√39/13.
Тогда объём пирамиды равен:
V = (1/3)SoH = (1/3)*(√39/4)*(4√39/13) = 1.