1) Площадь полной поверхности прямоугольного параллелипипеда считается по формуле: Sп = Sб + 2So, где Sб = Po * h
Po - периметр основания, который равен 2 * (6+7) = 26 см
V = So * h
So = 6 * 7 = 42 см
Sб = 26 * 5 = 130 cм
Sп = 130 + 2 * 42 = 214 cм
V = 42 * 5 = 210 см
2) Зная So и одну из сторон основания, найдем вторую сторону основания:
b = So/a = 24/4 =6 см (длина второй стороны основания)
Теперь можем найти периметр основания. Он равен:
Po = (a + b) * 2 = (4 + 6) * 2 = 20 см
Зная объем прямоугольного параллелипипеда и площадь его основания, найдем высоту пар/аллелипипеда:
h = V / So = 168/24 = 7 см
Найдем Sб. Она равна: Sб = Po * h = 20 * 7 = 140 см.
Найдем площадь полной поверхности. Она равна:
Sп = 140 + 2 * 24 = 188 см.
3) Найдем периметр основания. Он равен: (3 + 5) * 2 = 16 см
Площадь основания: 3 * 5 = 15 см
Высоту параллелипипеда находим по формуле: h = V / So = 90 / 15 = 6 см.
Площадь боковой поверхности: Sб = 16 * 6 = 96 см.
Площадь полной поверхности: Sп = 96 + 2 * 15 = 126 cм
Поделитесь своими знаниями, ответьте на вопрос:
Расположите номера в порядке возростания соответствующих отрезков изображенных на рисунке 2.10
из опр. ср. линии тр-ка:
1) AD = DB; BE = EC
2) DE = AO = OC, где O - середина строны AC
угол BDE = углу BAC (соответственные)
угол BED = углу BCA (соответственные)
угол ABC - общий
проведем DO, DO || BC
угол ADO = углу ABC (соответственные)
угол DOA = углу BCA (соответственные)
проведем EO, EO || AB
аналогично доказывается равенство углов в тр-ках DEO и OEC
получаем, что искомый треугольник состоит из четырех равных треугольников, причем на параллелограмм ODEC, площадь которого равна двум площадям тр-ка CDE, приходится половина всей площади искомого треугольника.
следовательно, ΔABC = 4 * 38 = 152.