Противоположные стороны параллелограмма параллельны, ABKD - трапеция.
Диагонали равны (AK=BD) - трапеция равнобедренная.
Равнобедренную трапецию можно вписать в окружность.
Вписанный угол равен половине дуги, на которую опирается.
∠KAD=∪KD/2
∠BDK=∪BK/2
∠BDK=∠KAD/3 => ∪BK =∪KD/3
Смежные стороны ромба равны, AB=AD.
Боковые стороны равнобедренной трапеции равны, AB=KD.
Равные хорды стягивают равные дуги.
∪AB=∪AD=∪KD
∪AB+∪BK+∪KD+∪AD =360 => 10/3 ∪KD =360 => ∪KD=108
∠ABK =(∪AD+∪KD)/2 =∪KD =108
Подробнее - на -
Я не уверена с правильным ответом. ну все же
С тупых углоа В и Д я провела бисектрисы ВК и ДМ. АК = МС = 17 см, КД = ВМ = 12см.
Угол В = углу Д, то значит бисектрисы поделят их на четыре равных угла:
Уголы АВК = КВС = АДМ = СДМ.
Так как это параллелогамм, то бисектрисы будут равны и паралельные.
Посмотри угол АДМ и угол АКВ они будут равны как относительные.
Отсюда вывод, если угол АВК = углу АКВ, значит теугольник АВК равнобедренной.
Где АК = АВ = 17см.
АВ = СД = 17 см
АД = ВС = 17 + 12 = 29
Р = 17 + 17 + 29 + 29 = 92 см
Поделитесь своими знаниями, ответьте на вопрос:
Угол 1 = х угол 2 = х+20 угол 3 = х+20+30 х+х+20+х+20+30 = 180
х+х+20+х+20+30 = 180°, 3х=180-70=110°,
∠1=х=36 2/3°
∠2=56 2/3°
∠3=36 2/3+20+30=86 2/3°