cos(γ)=0,925, γ≈22°.
Объяснение:
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.
По условию АВ⊥АD, ВС║AD, значит, АВ⊥ВС ⇒ трапеция АВСD - прямоугольная. Средняя линия МN=(ВС+AD):2 ⇒ BC+AD=2•MN=2•18=36. BC:AD=1:8, следовательно, AD=8BC и сумма оснований равна BC+8BC=9BC ⇒ BC=36:9=4. AD=8•4=32.
Сумма углов при одной стороне трапеции равна 180° (внутренние односторонние). Поэтому угол СDA=45°. Опустим из вершины С высоту СН. AH=BC=4. Отрезок НD=32-4=28. Треугольник СНD прямоугольный. Из суммы углов треугольника ∠DСH=180°-90°-45°=45° ⇒ ∆ СDH - равнобедренный. СН=НD=28. По построению СН⊥AD и АВ⊥AD по условию. Два перпендикуляра между параллельными сторонами равны. ⇒ АВ=СН=28 (ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
1.в треугольнике abc: ∠a=73°, ∠=56°найдите угол c. запишите ответ в виде целого числа или десятичной дроби (если ответ содержит несколько чисел, разделите их точкой с запятой ; . наприм. -2; 4, 3): .2.в равнобедренном треугольнике abc, с основанием ac проведена биссектриса ad. найдите угол b, если ∠adc=93°