fruktovahere
?>

Даны точки м(2: 0) n(6: -3) и p(5: -4 найти периметр треугольника mnp

Геометрия

Ответы

kate1610
Решение задания приложено
Даны точки м(2: 0) n(6: -3) и p(5: -4). найти периметр треугольника mnp
tatarinova-51
1. в треугольниках AQK и PQM AQ=PQ, MQ=KQ, ∠AQK=∠PQM как вертикальные углы. По первому признаку равенства треугольников треугольники AQK и PQM равны, значит ∠AKQ=∠PMQ. 
∠AKP=∠AKM+∠PKM=33+47=80

2. BO=CO => BOC равнобедренный, ∠OCB=∠OBC. Из условия известно, что ∠ABE=∠EBC, ∠BFC=90, =>
∠ABC=2∠BCO, ∠ABC+∠BCO=90,
∠ABC=60, ∠BCO=30
OD - медиана, проведенная к основанию равнобедренного треугольника BOC => ∠ODC=90, => ∠COD=60, =>∠FCA=60 => ∠FAO=30
∠ABO=∠BAO=30 => треугольник AOB равнобедренный => CA=OB=OC => треугольник AOC равнобедренный ,
∠AOE=∠BOD=60, ∠COE=∠BOF=60 => OE - биссектриса => OE - высота => ∠OAC=∠OCA=30
∠ABC=∠BCA=∠BAC => ABC равносторонний
Popov Valentina1324
Сподсчётами всё плохо что нашла то   можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны точки м(2: 0) n(6: -3) и p(5: -4 найти периметр треугольника mnp
Ваше имя (никнейм)*
Email*
Комментарий*