koxhulya61
?>

основание пирамиды-равнобедренный треугольник , боковые стороны которого равны а. боковые грани, проходящие через эти стороны , перпендикулярны к основанию и образуют меду собой угол α. третья грань составляет с основанием тоже угол α. найдите площадь боковой поверхности пирамиды.

Геометрия

Ответы

Lerkinm
Высота hо основания равна:
hо = a*cos(α/2).
Тогда высота Н пирамиды равна:
Н = hо*tg α = (a*cos(α/2))*tg α.
Высота hн наклонной грани равна:
hн = hо/cos α = (a*cos(α/2))/cos α.
Сторона основания равна 2a*sin(α/2).
Теперь можно определять площади боковых граней.
Вертикальных: Sв = 2*(1/2)*a*H = a²*cos(α/2)*tg α.
Наклонной: Sн = (1/2)*(2a*sin(α/2))*((a*cos(α/2))/cos α) = (1/2)а²*tg α.

ответ: Sбок =  Sв  + Sн = a²*cos(α/2)*tg α + (1/2)а²*tg α =
                     = a²tg α(cos(α/2) + (1/2)).
extremhunter
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
kirill76536
Первый
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
проведем высоту к хорде.
малый треугольник - прямоугольник.
Катет, лежащий напротив угла в 30, равен 1\2 гипотенузы:
0,8м = 80см
80:2 = 40см

Найдем второй катет по т.Пифагора:
√(80²-40²) = √(6400 - 1600) = √4800 = √3*16*100 = 40√3
Найдем хорду: 40√3*2 = 80√3.
Второй
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30

По теореме синусов: b\sinb = c\sinc
b = c*sinb/sinс
b = 80*√3/2*2 = 80√3
 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

основание пирамиды-равнобедренный треугольник , боковые стороны которого равны а. боковые грани, проходящие через эти стороны , перпендикулярны к основанию и образуют меду собой угол α. третья грань составляет с основанием тоже угол α. найдите площадь боковой поверхности пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*