Тангенс (корень из 6)/12. АС =1, ВС = (кор. из 6)/12. Гипот. АВ по Пиф. = 5*(кор. из6)/12. Синус А = ВС/АВ = 1/5 =0,2
anton1969026203
02.06.2022
ΔАВС- равнобедренный.Пусть АВ=ВС =а. ВЕ⊥ АС=10 см, DC⊥АВ=12 см. Найти R окр.,описанной около Δ СDB. ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы) S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1) S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2) Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3) Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ² х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100 Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒ 5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000 а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
skvorec3424
02.06.2022
1) Для начала построим данное сечение: Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками: а) Можно соединять только две точки, лежащие в плоскости одной грани. Точки В и С лежат в одной плоскости, значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы. Точки В и К лежат в одной плоскости → получаем отрезок ВК б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Грани ВВ1С1С и АА1D1D параллельны В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 ) Через точку К проводим прямую, паралельную прямой ВС → получаем точку L. Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 ) Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1 Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL. Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС. Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна: S bclk = 1/2 × ( KL + BC ) × KM 48 = 1/2 × ( 4 + 8 ) × КМ 48 = 6 × КМ КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°): cos AMK = AM/KM AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см По теореме Пифагора: КМ² = АМ² + АК² АК² = 8² – 4² = 64 – 16 = 48 АК = 4√3 см АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле: V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
ОТВЕТ: V ( призмы ) = 192√3 см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авс угол с равен 90 градусов, тангенс а равен 2 корня из 6. найти синус в