Из точки А проведены две секущие АВ и АС, которые пересекают окружность в точках К и М так, что AB = 2 см, ВС = 4 см, AC = 5 см, AK = 1 см. Найдите МК.
Объяснение:
1)∠AKM =180°-∠BKM по т. о смежных углах ; ∠C=180°-∠BKM по свойству углов вписанного 4-х угольника ⇒ ∠AKM =∠C.
2) ΔAKM ~ΔACB по двум углам : ∠A_общий , ∠AKM =∠C.
Сходственные стороны в подобных треугольниках пропорциональны : ,
⇒ MK=(1*4):5=0,8 (см)
============================
Свойство углов вписанного 4-х угольника
Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
Поделитесь своими знаниями, ответьте на вопрос:
Средняя линия равнобедренного треугольника, параллельная основанию, равному 16 см, а биссектриса, проведённая к основанию, -30см. найдите среднюю линию, параллельную боковой стороне треугольника.
Δ АВС - равнобедренный
ВК = 30 см - биссектриса к основанию АС, она же и медиана Δ АВС ⇒ АК=КС
NM = 16 см - средняя линия II АС ⇒AN=NB
NK = ? - средняя линия II ВС
NM x ВК в т.О и деляться ей пополам, т.к. Δ NMB подобен Δ АВС по 3-м углам, ⇒ Δ NMB равнобедренный и ВО его высота, биссектриса и медиана.
ВО=ВК т.к. NM средняя линия Δ АВС
Получаем
NO=1/2NM= 16/2=8
OK=1/2ВК= 30/2=15
Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90°
<NOK - смежный и =180°-<BON = 90°
По теореме Пифагора находим NK - гипотенузу Δ NOK
NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см