В треугольнике АВС угол С=80°. Найдите градусную меру угла АОВ, если О -точка пересечения биссектрис внешних углов треугольника при вершинах А и В.
Ответ: 50°
Объяснение: Сумма внешних углов многоугольника, взятых по одному у каждой вершины, равна 360°.
Внешний угол при С равен 180°-80°=100°. На сумму внешних углов при А и В приходится 360°-100°=260°.
Тогда в треугольнике АОВ сумма углов при вершинах А и В равна половине суммы внешних углов при А и В треугольника АВС, Т.е. ∠ОАВ+∠ОВА=260°:2=130°
Из суммы углов треугольника угол АОВ=180°-130°=50°
1. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(22-2) = 180°*20 = 3600°.
ответ: 3600°.
2. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 25 см*8 см = 200 см^2.
ответ: 200 см^2.
3. Площадь трапеции равна произведению его высоты на полусумму оснований (по совместительству, длина средней линии равна полусумме оснований трапеции). 8 см*15 см = 120 см^2.
ответ: 120 см^2.
4. Сумма углов выпуклого n-угольника вычисляется по формуле - 180°*(n-2) = 180°*(5-2) = 180°*3 = 540°.
ответ: 540°.
5. Вторая сторона прямоугольника равна 3 см (так как прямоугольный треугольник со сторонами 5 (см) и 4 (см) - египетский). 3 см*4 см = 12 см^2.
ответ: 12 см^2.
6. Если опустим на основание высоту (которая также является биссектрисой и медианой), она поделит основание на отрезки по 8 см каждые. Высота равна 6 см (опять же, заглянем в прямоугольный треугольник со сторонами 8 (см) и 10 (см) - египетский, поэтому, второй катет равен 6 см). Площадь каждого треугольника = 6 см*8 см/2 = 24 см^2, площадь всего равнобедренного треугольника = 24 см^2*2 = 48 cм^2.
ответ: 48 см^2.
7. Площадь прямоугольника равна произведению его смежных сторон. 4 см*8 см = 32 см^2.
ответ: 32 см^2.
8. Площадь прямоугольного треугольника равна половине произведения его катетов. 5 см*10 см/2 = 25 см^2.
ответ: 25 см^2.
9. Площадь параллелограмма равна произведению высоты на сторону, к которой проведена эта высота. 6 см*8 см = 48 см^2.
ответ: 48 см^2.
10. Площадь трапеции равна произведению его высоты на полусумму оснований. Полусумма оснований - 16 см/2 = 8 см. 48 см^2 = 8 cм*h (высота) ⇒ h = 6 cм.
ответ: 6 см.
Поделитесь своими знаниями, ответьте на вопрос:
Центр окружности, вписанной в равнобедренный треугольник, делит высоту, проведенную к основанию, на отрезки 5 см и 13 см. найдите периметр треугольника.
DE = r = 5 см
DG = DE = DF = 5 см – как радиусы вписанной окружности
Рассмотрим ∆ CDF (угол CFD = 90°):
По теореме Пифагора:
CD² = DF² + CF²
CF² = 13² - 5² = 169 - 25 = 144
CF = 12 см
2) Рассмотрим ∆ CBE (угол СЕВ = 90°):
По теореме касательных к окружности, проведённых из одной точки
BD – биссектриса угла ABC
По свойству биссектрисы:
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам →
CD/ DE = CB/ BE = 13 / 5
Пусть FB = BE = x , как отрезки кательных к окружности, проведённых из одной точки →
CB / BE = 13 / 5
( 12 + x ) / x = 13 / 5
13x = 5 × ( 12 + x )
13x = 60 + 5x
13x – 5x = 60
8x = 60
x = 60/8 = 7,5 см
Значит, FB = BE = 7,5 см
По свойству отрезков касательных, проведённых из одной точки →
CG = CF = 12 см
GA = AE = 7,5 см
P abc = AC + CB + AB = 12 + 7,5 + 12 + 7,5 + 7,5 + 7,5 = 24 + 30 = 54 см
ОТВЕТ: P abc = 54 см.