Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.
Поделитесь своими знаниями, ответьте на вопрос:
Гіпотенуза прямокутного трикутника дорівнює 5 см а різниця катетів 2 см знайдіть периметр
длинный катет a+2
По теореме Пифагора
a² + (a+2)² = 5²
a² + a² + 4a + 4 = 25
2a² + 4a - 21 = 0
a₁ = (-4 - √(4² + 4*2*21))/4 = (-4 - √(16 + 168))/4 = -1 - √184/4 = -1 - √23/2
отрицательная длина катета невозможна, это решение отбрасываем
a₂ = -1 + √23/2
b₂ = a₂ + 2 = 3 + √23/2
P₂ = a₂ + b₂ + 5 = -1 + √23/2 + 3 + √23/2 + 5 = 8 + √23