7) Примем диагональ d и высоту H, равные 2.
Тогда тангенс угла β наклона бокового ребра равен:
tg β = H/(d/2) = 2/1 = 2.
значит, β = arctg 2.
ответ В.
Тангенс наклона апофемы A равен: tg(A) = H/(1/√2) = 2√2.
ответ Г.
В треугольнике ASC боковые рёбра угол S делится высотой пополам.
Тогда угол ASC = 2arctg(1/2).
ответ Д.
8) Примем коэффициент пропорциональности длин сторон основания за к.
Полупериметр р = к(17+10+9)/2 = 18к.
Площадь боковой поверхности Sбок = PL = (2*18k)*16 = 36k*16.
Площадь основания по Герону:
So = √(18k*1k*8k*9k) = 36k².
Приравняем полную поверхность:
1440 = 2*36k² + 36k*16, после сокращения на 72 получаем:
k² + 8k – 20 = 0. D = 64 +4*20 = 144.
k1 = (-8 + 12)/2 = -10, не принимаем.
k2 = (-8 + 12)/2 = 2.
Находит площадь боковой поверхности Sбок = 36*2*16 = 1152 см².
ответ: Sбок = 1152 см².
9) Находим площади граней пирамиды.
p(ABC) = (13+14+15)/2 = 21 см. S(ABC) = √(21*8*7*6) = 84 см².
S(DAC) = (1/2)*9*13 = (117) см².
S(DAB) = (1/2)*9*15 = (135/2) см².
Находим высоту боковой грани BDC путём пересечения вертикальной плоскостью.
Сначала находим высоту основания из точки А.
h(A) = 2S/BC = 2*84/14 = 12 см.
Тогда h(BDC) = √(9² + 12²) = √(81 + 144) = √225 = 15 см.
Получим S(BDC) = (1/2)14*15 = 105 см².
ответ: S = 84+ (117/2) + (135/2) + 105 = 315 см².
Чертёж смотрите во вложении.
Дано:
Четырёхугольник ABCD - ромб.
∠АВС - острый.
ВЕ и ВР - высоты, проведённые к сторонам ромба AD и CD соответственно.
∠ЕВР = 150°.
ВЕ = 6 см.
Найти:Р(ABCD) = ?
Решение:Рассмотрим четырёхугольник ВЕDP.
Сумма углов четырёхугольника равна 360°.
То есть -
∠Е+∠D+∠P+∠В = 360°
∠D = 360°-∠Е-∠Р-∠В
∠D = 360°-90°-90°-150°
∠D = 30°.
Рассмотрим соответственные ∠EAB и ∠D при АВ║CD (параллельны по определению ромба) и секущей ED.
∠EAB = ∠D = 30° (по свойству соответственных углов при параллельных прямых и секущей).
Рассмотрим прямоугольный ΔЕВА.
Против угла в 30° лежит катет, равный половине гипотенузы.
То есть -
У ромба равны все стороны.
Следовательно -
Р(ABCD) = 4*АВ = 4*12 см = 48 см.
ответ: 48 см.Поделитесь своими знаниями, ответьте на вопрос:
Известно косинус а=0.6 найдите тангенса и синус а