Serafim
?>

Втреугольнике вдс проведена высота дк., вд=сд, угол свд=64°.найдите углы треугольников вдк и сдк можно еще и чертеж

Геометрия

Ответы

Геннадьевич-Тимофеева158
Треугольник сбд равнобедренный
сначала найдем угол д
углы сбд и бсд равны
180-(64+64)=52
угол д=52 градуса
т.к. сбд равноб. то высота в этом треугольнике является биссектрисой, следовательно угол д делится пополам
угол бдк равен углу сдк = по 26 градусов
Втреугольнике вдс проведена высота дк.,вд=сд, угол свд=64°.найдите углы треугольников вдк и сдк можн
sashulyah3183

1. Опустим перпендикуляр МО из точки М на плоскость α. Это и есть искомое расстояние.  Треугольники АМО и ВМО прямлугольные, так как МО - перпендикуляр к плоскости α. АО=х, ВО=7х (дано).  По Пифагору: в треугольнике АМО катет МО²=АМ²-АО² (1), в треугольнике ВМО катет МО²= ВМ²-ВО² (2). Приравняем (1) и (2):  144-х² = 576 - 49х²  => 48х² = 432  =>  x² = 9. Подставим это значение в (1): МО²= 144-9=135. МО = √135 =  3√15 см.

ответ: расстояние от точки М до плоскости МО = 3√15 см.

2. Соединим точку М с вершинами правильного треугольника АВС. Получится правильная пирамида МАВС с вершиной в точке М. Точка М проецируется в центр О  основания пирамиды (правильного треугольника), так как МА==МВ=МС (дано). Точка О является центром вписанной и описанной окружностей правильного треугольника (свойство). Радиус вписанной окружности, выраженный через сторону, равен r= (√3/6)*a, где "а" - сторона треугольника. В нашем случае r= МО =(√3/6)*12 = 2√3см. Радиус вписанной в треугольник окружности перпендикулярен к его сторонам, так как стороны являются касательными к вписанной окружности. По теореме о трех перпендикулярах отрезок МН также перпендикулярен этой стороне, то есть МН - искомое расстояние от точки М до стороны (любой) треугольника (его апофема). По Пифагору из треугольника МОН имеем МН=√(МО²+ОН²) = √(36+12) =4√3см.

ответ: искомое расстояние от точки М до сторон треугольника равно 4√3см.

3. В правильном треугольнике стороны равны. Расстояние от точки М до стороны ВС треугольника - это перпендикуляр МН из точки М к стороне ВС. По теореме о трех перпендикулярах основание Н высоты правильного треугольника АВС, опущенной из вершины А на сторону ВС и оснрвание перпендикуляра МН - это одна и та же точка. Следовательно, искомое расстояние МН можно найти по Пифагору из прямоугольного треугольника АМН,как гипотенузу, зная, что катет МА=2см(дано), а катет АН (высота правильного треугольника АВС) по формуле равен АН=(√3/2)*АВ=(√3/2)*4=2√3см. МН = √(МА²+АН²) =  √(4+12) = 4см.

ответ: расстояние от точки М до стороны ВС равно 4см.


1.из точки к плоскости проведены две наклонные длиной 12 и 24 см.проекции которых относятся как 1: 7
1.из точки к плоскости проведены две наклонные длиной 12 и 24 см.проекции которых относятся как 1: 7
1.из точки к плоскости проведены две наклонные длиной 12 и 24 см.проекции которых относятся как 1: 7
samoilovcoc
Проведем диагонали АС и ВD.Точку пересечения обозначим Е.
В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный.
Первый признак подобия треугольников:
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒
∆ АВЕ ≈ ∆ СDЕ, ⇒
АЕ пропорциональна DE, ВЕ пропорциональна ЕС.
В треугольниках ADE и ВСЕ:
АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные.
Второй признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике вдс проведена высота дк., вд=сд, угол свд=64°.найдите углы треугольников вдк и сдк можно еще и чертеж
Ваше имя (никнейм)*
Email*
Комментарий*