Sidorenko
?>

Один из углов образованных диагональю ромба и его стороной равен 36°. найдите большой угол ромба

Геометрия

Ответы

fshevxuzheva313
Диагональ ромба является биссектрисой угла, значит 36* 2 = 86° - меньший угол ромба
(360° - (72° * 2)) : 2 = °108 - больший угол ромба

ответ: 108° - больший угол ромба 
obar1
Синус - отношение противолежащего катета к гипотенузе.
Косинус - отношение прилежащего катета к гипотенузе.
Тангенс - отношение противолежащего катета к прилежащему.

1)Что значит синус 3/5? Это значит, что противолежащий катет равен 3 см, а гипотенуза равна 5 см. Начертим прямоугольный треугольник и сотрем катет, равный 3 см. Получим искомый угол.
2) То же самое делаем и с косинусом, то есть прилежащий катет будет равен 5, а гипотенуза равна 6 см. Опять же, стоите прямоугольный треугольник с прилежащим катетом 5 см и гипотенузой 6 см. Сотрете неизвестный катет и получите искомый угол.
3) С тангенсом дело будет иначе. Тангенс - отношение противолежащего катета к прилежащему. Строите прямоугольный треугольник. То есть один катет будет равен 2 см, а второй 1 см. Дальше достраиваете гипотенузу и сотрете катет, который равен 2 см.
4) 0.4 = 4/10 = 2/5. То есть в прямоугольном треугольнике противолежащий катет будет равняться 2 см, а гипотенуза 5 см. Достроите второй катет. В итоге получите искомый треугольник с синусов 0,4
zakup-r51

Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см,  наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.

Решение второй задачи сводится к следующему.

М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е.  ВМ⊥АС, по условию МQ⊥ВМ.

Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее,  MQ и AС,

и по признаку перпендикулярности прямой и плоскости, т.е.

если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

ВЫВОД.  ВМ⊥ (АQC), доказано.

PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один из углов образованных диагональю ромба и его стороной равен 36°. найдите большой угол ромба
Ваше имя (никнейм)*
Email*
Комментарий*