252 ед².
Объяснение:
В равностороннем треугольнике стороны равны, а все углы по 60°.
ВА = ВС = АС = 18:3 = 6 ед.
Вектор (ВС - 3ВА)² - это квадрат модуля вектора |ВС - 3ВА|.
Вектор 3ВА= ВА1 = 18 ед. (равен трем коллинеарным векторам ВА, расположенным на одной прямой, конец которого будет в точке А1).
По правилу вычитания векторов имеем:
ВС - 3ВА = ВС - ВА1 = А1С.
Вектор А1С² находим по теореме косинусов:
|A1С|² = |BC|² + |BA1|² - 2|BC|·|BA1|·Cos60 =>
|A1С|² = |6|² + |18|² - 2·6·18·(1/2) = 252 ед.
Но А1С² это как раз искомый вектор.
В треугольнике две стороны равны 10 см и 17 см, а высота, опущенная на третью, равна 8 см. найти наименьшую из площадей возможных треугольников
Объяснение:
S(треуг)= 1/2*а*h. Пусть АВ=17 см,ВС=10 см, ВН=8 см, ВН ⊥АС.
Возможные треугольники с высотой равной 8 см это ΔАВС, ΔАВН, ΔВСН. У всех перечисленных треугольников одинаковая высота, значит чем меньше основание , тем меньше площадь треугольника.
АС >АН и АС>СН, тк АС это сумма АН и СН.
Т.к ВН-высота, то АВ и ВС наклонные . А чем больше длина наклонной , тем больше проекция : АВ>BC⇒АН>СН.
Значит СН<AH<AC.
ΔCВН-прямоугольный , по т. Пифагора НС=√(10²-8²)=6 (см)
S(ΔCBH)=1/2*6*8=48 (см²)
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике abc с основанием ac угол в =64 градуса найдите угол amc где cm биссектриса треугольника