Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник, где образующая является гипотенузой, а высота и радиус основания - катетами. Причём, высота находится напротив угла в 30°, а значит, равна 1/2 образующей конуса. 12 · 2 = 24 (см) - образующая конуса. По т. Пифагора найдем радиус основания конуса: √(24² - 12²) = √(576 - 144) = √432 (см) Найдём объём конуса: V конуса = (1/3) · π · R² · H V конуса = (1/3) · π · (√432)² · 12 = 1728π (см³) ответ: 1728π см³.
horina12
31.03.2023
Первый треугольник h -высота v и w - углы треугольника
второй треугольник h1 - высота v1 и w1 - углы треуг.
h=h1 v=v1 w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг.) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т.к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны).
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам
elenalusia
31.03.2023
В основе задания лежат свойства подобных треугольников. 1. Берем произвольный отрезок АВ и откладываем от него два данных угла . Соединяем лучи, исходящие из вершин А и В, точку пересечения обозначаем С,получается треугольник АВС , у которого два угла равны данным. 2 .Проводим вершину из угла С. Обозначим ее СЕ. 3.Далее на прямой СЕ отложим от точки Е отрезок, равный заданной высоте. Конец отрезка обозначим М. 4. Из точки М проведем прямые параллельно сторонам АС и ВС. Точки пересечения этих прямых с прямой АВ обозначим Р и Т. МРТ - искомый треугольник.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Образующая конуса наклонена к плоскости основания под углом 30 а его высота равна 12см . найти объем конуса. надо
12 · 2 = 24 (см) - образующая конуса.
По т. Пифагора найдем радиус основания конуса:
√(24² - 12²) = √(576 - 144) = √432 (см)
Найдём объём конуса:
V конуса = (1/3) · π · R² · H
V конуса = (1/3) · π · (√432)² · 12 = 1728π (см³)
ответ: 1728π см³.