По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4
Объяснение:
По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Через середину диагонали ac трапеции abcd перпендикулярно этой диагонали проведена прямая, пересекающая основания ad и bc в точках m и t. докажите что четырехугольник atcm-ромб и найдите радиус окружности, вписанной в четырехугольник atcm, если at=10 см, ac=16 см
∠MAO=∠TCO (нактерст лежащие при параллельных основаниях трапеции)
△AOM=△COT (по стороне и прилежащим к ней углам)
OM=OT
Диагонали ATCM перпендикулярны и точкой пересечения делятся пополам, ATCM - ромб.
В ромб можно вписать окружность (так как суммы его противоположных сторон равны). Центр вписанной окружности ромба - точка пересечения диагоналей (так как диагонали являются биссектрисами его углов). Радиус вписанной окружности - перпендикуляр из центра на сторону (OH⊥AT).
AO=AC/2=16/2=8
△AOT - египетский треугольник (3:4:5), множитель 2:
OT=3*2=6 (AO=4*2; AT=5*2)
Высота из прямого угла делит треугольник на подобные друг другу и исходному.
△OHT~△AOT, k=OT/AT=0,6
OH=AO*k =8*0,6 =4,8
------------------------------------------------------------------------------------------------------------
Диагонали четырехугольника точкой пересечения делятся пополам - признак параллелограмма. Диагонали параллелограмма перпендикулярны - признак ромба.