Лебедев972
?>

Площадь основания цилиндра равна 16 пи найдите площадь боковой поверхности цилиндра если его образующая равна 3

Геометрия

Ответы

Карева Даниил1537
Решение на приложенном изображении.
Площадь основания цилиндра равна 16 пи найдите площадь боковой поверхности цилиндра если его образую
inulikb
Пусть у нас трапеция АВСД, АВ = СД, АС - биссектриса угла А, угол АСД - прямой.
Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне.
Имеем АВ = ВС =СД = а.
Опустим перпендикуляр СЕ из точки С на АД.
При этом получили 2 подобных треугольника: АСЕ и ЕСД.
Угол САЕ равен углу ДСЕ как взаимно перпендикулярные.
Угол А равен углу Д (как углы при основании равнобедренной трапеции).
Поэтому угол ДСЕ равен половине угла Д.
Имеем: 90° =(1/2)Д+Д = (3/2)Д,
Отсюда угол Д = 90*2/3 = 180/3 = 60°.
Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а.
Высота СЕ = а*sin 60° = a√3/2.
Площадь S трапеции равна:
S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4.
То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.
Olga1509
Пусть у меньшей окружности радиус R и расстояние от вершины угла до центра D; а у большой k*R и k*D; - ясно, что эти расстояния пропорциональны.
k нужно найти из отношения площадей.
Условие, что окружности касаются, означает, что
k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1);
легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе.
Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3;
Легко видеть, что k^2 = 49 +  2*7*4√3 + 48 = (7 + 4√3)^2;
то есть k = 7 + 4√3; технически задача уже решена.
sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площадь основания цилиндра равна 16 пи найдите площадь боковой поверхности цилиндра если его образующая равна 3
Ваше имя (никнейм)*
Email*
Комментарий*