volkovaekaterina303
?>

Внутри плоского равнобедренного треугольника abc с основанием bc взято такую точку m, что ∠mbc=30°, ∠mcb=10°. найдите ∠amc, если ∠bac=80°.

Геометрия

Ответы

mototeh69
△BAC - равнобедренный, ∠ABC=∠ACB =(180°-80°)/2=50°

В равнобедренном треугольнике биссектриса угла против основания является медианой и высотой, то есть серединным перпендикуляром к основанию.
AN - биссектриса ∠BAC
△BNС - равнобедренный (N лежит на серединном перпендикуляре к BC)
BN=CN, ∠NBC=∠NCB=30°
∠NCM= ∠NCB-∠MCB =30°-10° =20°
∠NBA= ∠ABC-∠MBC =50°-30° =20°

∠BNC= 180° -2∠NBC =180°-30°*2 =120°
∠ANB= 180° -∠BAC/2 -∠NBA =180°-40°-20° =120°

△ANB=△MNC, MC=AB=AC, △ACM - равнобедренный

∠ACN=50°-20°-10°=20°, CN - биссектриса ∠ACM
△ANM - равнобедренный (N лежит на серединном перпендикуляре к AM)
∠AMN= (180°-120°)/2 =30°
∠NMC= 180°-120°-20° =40°
∠AMC= ∠AMN+∠NMC =30°+40° =70°
Внутри плоского равнобедренного треугольника abc с основанием bc взято такую точку m, что ∠mbc=30°,
Serezhkin
Проведем высоту ЕН в равнобедренном треугольнике EFM. Эта высота является и медианой, то есть МН=НF=10√6.   В прямоугольном треугольнике ЕРН <EPH=60° (так как это угол между ЕР и плоскостью МРF), значит <PHE=30°. Тогда РН=2*РЕ=20 (РЕ - против угла 30°). РН - апофема (высота) грани МРЕ. Площадь этой грани равна Smpe=0,5*MF*PH=0,5*20√6*20 = 200√6.
Из треугольника ЕРН по Пифагору ЕН=√(PH²-PE²)=10√3.
Из треугольника ЕНМ по Пифагору ЕМ=√(ЕH²+НМ²)=√(300+600)=30.
Площадь грани ЕРМ=0,5*ЕМ*РЕ=0,5*30*10=150.
Площадь боковой поверхности пирамиды Sб=2*150+200√6 =300+200√6=100(3+2√6).
nataliarogacheva

А1. ответ: 4.

А2. ответ: 4.

А3. ответ: 3.

А4. ответ: 1.

В1. Дано: ΔАВС, АВ = ВС = АС + 5 см, Р = 34 см.

Найти: АВ.

Решение: Пусть АС = х см, тогда АВ = ВС = х + 5,

x + (x + 5) + (x + 5) = 34

3x + 10 = 34

3x = 24

x = 8

АС = 8 см

АВ = ВС = 8 + 5 = 13 см

ответ: боковая сторона 13 см.


В2. Дано: ΔАВС, АВ = АС, АМ - медиана, Pabc = 40 см, Pabm = 33 см.

Найти: АМ.

Pabm = 33 см

АВ + ВМ + АМ = 33

2 · (АВ + ВМ + АМ) = 66

Так как АВ = АС, а ВМ = СМ, то

2АВ + 2ВМ + 2АМ = 66

АВ + АС + ВС + 2АМ = 66

2АМ = 66 - (АВ + АС + ВС) = 66 - Pabc = 66 - 40 = 16

AM = 16/2= 8 см


С1. 1) Если сумма равных сторон равна 26 см, то боковые стороны равны по 13 см, а основание - 10 см.

2) Обозначим боковые стороны а и b, основание - с.

а + с = 26 см

Рabc = 2а + с = 36 см

с = 36 - 2а

с = 26 - а

26 - a = 36 - 2a

a = 10 см

c = 16 см

ответ: 13 см, 13 см, 10 см или 10 см, 10 см, 16 см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Внутри плоского равнобедренного треугольника abc с основанием bc взято такую точку m, что ∠mbc=30°, ∠mcb=10°. найдите ∠amc, если ∠bac=80°.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

meu72
Viktoriya
dentalfamily
alaevluka77
VolkovaMaslova
alenaya69918
Александрович
russstep
troian07
opel81
Alekseevich_Elena
nikv568734
detymira
Дудина895
kseybar