в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
пусть длина меньшего основания а . тогда длина большего - 8-а.
средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
площадь трапеции равна полусумме оснований, умноженной на высоту.
пусть высота каждой части трапеции равна h.
тогда площадь верхней трапеции будет (а+4)•h: 2,
а площадь большей (8-а+4)•h: 2=(12-а)•h: 2
по условию отношение этих площадей равно 5/11⇒
[ (а+4)•h: 2]: [ (12-а)•h: 2]=5/11
отсюда 60-5а=11а+44
16а=16
а=1
подробнее - на -
№1 Ну если нарисовать параллелограм в соотношение 3:2, то получиться что на большей стороне по 3 равных отрезка, а на меньшей 2, всего получается 10 частей, а так как периметр равен 30, то надо 30 : 10, получается, что длина отрезка 3 см, а т. к. меньшая часть состоит из двух отрезочков, то 3*2=6
ответ: меньшая сторона 6 см
№2 Я не поняла, но там получается треугольник BNA прямоугольный, но мне кажется что то сдесь не хватает, ну может я чего не знаю.
№3 дана трапеция с основаниями ВС и АД , проведем высоту СН. Рассмотрим четырехугольник ABHD, AD параллельная BH,как перпендикуляры проведенные к одной прямой. AB параллельно DH, как отрезки лежажие на основаниях трапеции., сл-но ABHD параллелограм, поэтому AB=BH=13 см.
Рассм. треугольник BHC- прямоугольный т.к ВН перпендикулярна АВ, сл-но угол АВН =90градусов по скольку Угол АВС 135, то угол НВС=45 градусов. Т.К угол НВС+ угол ВСН=90 градусов, как сумма острых углов в прямоугольном треугольнике, , сл-но угол ВСН = 45градусов, а сл-но треугольник ВСН -равнобедренный с основанием ВС, поэтому ВН=НС=6 см
DC=DH+HC=12 см.
ну и по формуле вычисляешь)
№4 - ...
Поделитесь своими знаниями, ответьте на вопрос:
Основание пирамида-ромб, диагонали которого 6 м и 8 м, а высота пирамиды равна стороне основания. найти объем пирамиды.
По т. Пифагора
(6/2)² + (8/2)² = a²
9 + 16 = a²
a² = 25
a = 5 м
И высота пирамиды такая же, h = 5 м
Площадь основания = половина произведения диагоналей
S = 1/2*6*8 = 24 м²
Объём
V = 1/3*S*h = 1/3*24*5 = 40 м³