Центры обоих окружностей совпадают с точкой пересечения медиан, которые делятся этой точкой в отношении 1:2. Поэтому радиус вписанной окружности в 2 раза меньше радиуса описанной окружности.
yelenaSmiryagin
08.03.2023
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота, РА=РВ=РС=6 см
5. Находим площадь боковой поверхности пирамиды. Р = 1/2 Р₀l Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
sabinina0578
08.03.2023
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что радиус окружности, описанной около равностороннего треугольника, в два раза больше радиуса окружности, вписанной в него.