Дано: угол CDB=90°, угол ABD= 45°, угол CBD= °,. BC= 7 см, BD= 5 см. Найти: угол A, угол C, AC.
————
Сделаем по данному условию рисунок и рассмотрим прямоугольные треугольники АВD и СВD, на которые ВD разбила исходный.
Сумма острых углов прямоугольного треугольника 90°.
∠ВАD=90°- 45°=45°
⊿ АВD- равнобедренный по равенству углов при основании АВ ⇒ АD=BD=5 см
∠CDB=90°и угол СВD=30°(дано),⇒ В ⊿ ВСD ∠С=90°-30°=60°.
Длина отрезка равна сумме длин составляющих его частей⇒ АС=AD+CD
Катет прямоугольного треугольника, противолежащий углу 30°, равен половине гипотенузы. ⇒ CD=1/2•BC=7:2=3,5 см, из чего следует: АС=АD+DC=5+3,5=8,5 см.
НО!
По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов. ⇒ СD=√(BC²-ВD²)=√24=2√6, и не равно 3,5
Следовательно, треугольник ВСD с гипотенузой 7 и катетом 5 не может иметь острый угол 30°, если он прямоугольный.
Величина угла СВD -по ошибке или намеренно ( бывает и так), - дана неверно.
Найдем искомый угол C по его синусу.
sinC=ВD/BC=5/7=0.7142857142857143 По таблице Брадиса или по калькулятору находим его величину. ∠С=45,58° .
Тогда СD=BC•cos45,58°=7•0,6999≈4,9 см ⇒
АС=5+4,9≈9,9 см.
.
Поделитесь своими знаниями, ответьте на вопрос:
Радиусы вневписанных окружностей около треугольника равны 3, 4 и 5 соответственно. найдите стороны треугольника или докажите, что такого треугольника не существует.
Пусть имеем треугольник АВС и вневписанные окружности ra = 3, rb = 5, rc = 4.
Впишем в треугольник окружность с радиусом r.
Точки касания этой окружности стороны АС и rа к её продолжению соответственно В1 и В2.
Находим радиус вписанной окружности в треугольник АВС по известным радиусам вневписанных окружностей.
.
(1/r) = (1/3) + (1/4) + (1/5) = 47/60.
Получаем радиус вписанной окружности r = 60/47.
Центры окружностей О и О1 лежат на биссектрисе угла А.
Используем свойства вписанной и вневписанной окружностей.
Квадрат полупериметра р треугольника АВС равен:
р² = ra*rb + rb*rc + rc*ra = 3*5 + 5*4 + 4*3 = 47.
Отсюда р = √47.
Тогда площадь S треугольника АВС равна: S = rp = 3√47 ≈ 8,75189949.
Применим свойства: отрезок АВ2 = р, отрезок АВ1 = р - а.
Из подобия треугольников выводим пропорцию: r/АВ1 = rа/АВ2. Подставим значения: r/(р - а) = rа/р, или rр = rа(р - а).
Раскроем скобки и выделим а: а = р - (рr/rа) = (р(rа - r)/rа.
По аналогичным формулам находим стороны b и с.
Подставив значения, получаем:
а = 3,93835477 b = 5,105274702 c =4,667679728 .
Делаем проверку правильности найденных значений.
По формуле Герона S = √(p(p - a)(p - b)(p - c)).
Подставив значения, находим S = 8,75190051 . что соответствует уже найденному значению.
Вторая проверка: по теореме косинусов угол А равен 47,26788996°.
С другой стороны А = 2arctg(ra/p) = 2arctg(3/√47) = 47,26788996 ° верно.