Хабарьева Андрей1056
?>

Угол между высотами паралелаграма, которые равны 4 и 5 см, 30 градусов. найдите периметр паралелаграмама. желательно с графиком

Геометрия

Ответы

olma-nn477

36
AB = 2*4=8 (катет против угла в 30 градусов)
AB = 2*5=10 (катет против угла в 30 градусов)
P = 2*8+2*10=36

barinovmisha2013

Дано: ABCD - ромб, BD=24см, AC=10см;

Найти: <A, <B, <C, <D;

Решение.

1) AB=BC=CD=AD, ВО=½BD, BO=12 и AO=½AC AO=5(по свойствам ромба), по теореме Пифагора AB²=BO²+AO², АВ²=12²+5², AB²=169, AB=13;

2)<A=<B=<C=<D, <ABO=<CBO, <BAO=<DAO(по свойствам ромба),   sin  ABO = AO/AB,

sin  = 5/13,  sin ABO≈0.38 <ABO≈68°, <BAO=180°-<BOA-<ABO, <BAO=180°-90°-68°=22°,

3) <A=44°, <B=136°, <C=44°, <D=136°

ответ: <A=44°, <B=136°, <C=44°, <D=136°.

 


Диагонали ромба равны 10 см и 24 см. найдите углы ромба
ea9824165833886

1) Находим площадь ромба АВСД: S=d1*d2/2=10*24/2=120(см кв)

2)Находим АВ-сторону ромба.Для этого рассмотрим прямоугольный треугольник АОВ(О-точка пересечения диагоналей). АО=10:2=5(см), ВО=24:2=12(см).

По теореме Пифагора АВ=sqrt{5^2+12^2}=sqrt{169}=13(см)

3)Находим расстояние от точки О-точки пересечения диагоналей ромба до стороны ромба АВ. Оно равно высоте OH треугольника АОВ.

Площадь треугольника АОВ равна 1/4 площади ромба, т.е. 120:4=30(см кв).

S(AOB)=AB*OH/2

13*OH/2=30

13*OH=60

OH=60/13

OH=4 8/13 (см)

 

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Угол между высотами паралелаграма, которые равны 4 и 5 см, 30 градусов. найдите периметр паралелаграмама. желательно с графиком
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

YekaterinaAbinskov
Анастасия1097
annayarikova
konstantinslivkov
Косоногов Иосифовна
bondarenkoss
Chuhnin195107364
tatakypzova
Azarenkoff
rnimsk149
vipteatr
Валентинович133
filial2450
cafegasoil
libirishka7910