keti0290103
?>

Найдите целочисленный прямоугольный треугольник с гипотенузой , равной 2018см.

Геометрия

Ответы

aetolstih

Целочисленный прямоугольный треугольник, это так называемая "пифагорова тройка" : a,b,c ∈ N, для которой выполняется равенство: a² + b² = c²

Согласно формуле Евклида, для любой пары натуральных чисел m и n (m>n) целые числа: \boldsymbol {a=m^2-n^2,~~b=2mn,~~c=m^2+n^2} являются пифагоровой тройкой. Причём, для примитивных троек разность m-n - нечетная.

Итак, гипотенуза равна 2018 = 2 · 1009. Так как 1009 - простое число, то пусть с = 1009

Так как c = m² + n², то для числа 1009 нужно подобрать сумму квадратов.

1009 = 31² + 48 = 30² + 109 = 29² + 168 - не подходят

1009 = 28² + 15² ⇒ m = 28; n = 15

Тогда a = m² - n² = 28² - 15² = 559; b = 2mn = 2·28·15 = 840

Числа 559, 840 и 1009 - пифагорова тройка.

Но в условии число 2018 вдвое больше числа 1009, значит искомая тройка 2·559; 2·840; 2·1009

Прямоугольный треугольник имеет стороны 1118, 1680, 2018 см

Проверка : 1118² + 1680² = 2018²

1 249 924 + 2 822 400 = 4 072 324

4 072 324 = 4 072 324

ответ: 1118 см, 1680 см, 2018 см

Aleksey19801
У пирамиды две боковые грани (условно 1-ая и 4-ая)  - это прямоугольные треугольники, т.к.  по условию, высота (перпендикуляр) пирамиды проходит через одну из вершин основания, и эти грани - плоскости ( условно, 1-ая и 4-ая) образуют с основанием угол 90°.
Две  другие грани - плоскости тоже прямоугольные треугольники, т.к. катет (ребро грани) является гипотенузой для 1-ой и 4-ой граней.У гол этих граней - плоскостей с основанием равен 45° т.кт в 1-ая и 4-ая грани  не только прямоугольные, но и равнобедренные ΔΔ, : один катет- сторона основания =6 см , а другой катет - высота пирамиды тоже = 6 см, углы при основании в Δ -ках 1-ой и 4-ой граней равны (180°-90°) : 2 = 45°
Площади 1-ой и 4-ой  граней равны S₁ = S₄=1/2ab = 1/2·6·6 =18 см²
Найдем гипотенузы в 1- ой и в 4-ой гранях в этих Δ-ках, т.к. они  являются катетом для 2-ой и 3-ей граней, соответственно.
с²=а²+b²  
c² =6²+6² =2×6²
c = √(2·6²) = 6√2
Площадь 2-ой и 3-ей граней тоже равны S² = S³ =1/2ab = 1/2×6√2×6 = 18√2
palmhold578
Гипотенуза данного прямоугольного треугольника 
с = √(8² + 6²) = 10 -- это "египетский треугольник" )))
----- так называют треугольники со сторонами 3-4-5 и 6-8-10... )))
диагональ квадрата со стороной 8 = 8√2 
диагональ квадрата со стороной 6 = 6√2 
и одна сторона треугольника вычисляется легко: 4√2 + 3√2 = 7√2 
((диагонали квадрата точкой пересечения делятся пополам)))
диагональ квадрата со стороной 10 = 10√2 
но, если найдем все стороны треугольника, то площадь треугольника можно будет найти по формуле Герона -- громоздкие вычисления)))
можно попробовать найти площадь треугольника как разность площадей...
площадь всей этой фигуры состоит из площади прямоугольного треугольника и площадей трех квадратов: 
S = 36 + 64 + 100 + 48/2 = 224
осталось "отсечь лишнее"...
для каждого квадрата "лишней"  будет (3/4) его площади --
на рисунке синий цвет))) и минус еще площади двух треугольников)))
рассмотрим треугольник КАМ -- две стороны в нем известны, угол между этими сторонами = 90+а, где а -- острый угол из прямоугольного треугольника)))
cos(a) = 0.6
sin(KAM) = sin(90+a) = cos(a) = 0.6
S(KAM) = 3√2 * 5√2 * 0.6 / 2 = 9
аналогично рассуждая, S(NBM) = 4√2 * 5√2 * 0.8 / 2 = 16 
и теперь площадь треугольника 
S(KMN) = 224 - 3*36/4 - 3*64/4 - 3*100/4 - 9 - 16 =
= 224 - 27 - 48 - 75 - 25 = 224 - 175 = 49
Решите и рисунок: на сторонах прямоугольного треугольника с катетами 6 и 8 построены квадраты, лежащ

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите целочисленный прямоугольный треугольник с гипотенузой , равной 2018см.
Ваше имя (никнейм)*
Email*
Комментарий*