annabanova9
?>

Даны вектора a b и точка d не лежащие на прямой ab постройте вектора равные вектора ab . я 30

Геометрия

Ответы

mlf26

ответа нету. Во всем интернете всё облазил сам не могу найти.

Nikolaevich-Svetlana388

Построение сводится к проведению перпендикуляра из  точки к прямой. 

Из вершины А, как из центра,  раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим  эту точку К.

∆ КАС- равнобедренный с равными сторонами АК=АС.

Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой. 

Для этого из точек К и С, как из центра,  одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А. 

Отрезок АМ разделил КС пополам и является  искомой высотой ∆ АВС из вершины угла А. 

Tatyanaaarzieva72

В условии опечатка: в пункте б) надо найти отношение площадей треугольника ВОС и НЕвыпуклого пятиугольника AOBCD.

а) ∠ОВС = ∠ОСВ по условию, значит ΔОВС равнобедренный с основанием ВС, ОВ = ОС.

АС = CD по условию, значит ΔACD равнобедренный с основанием AD, ∠CAD = ∠CDA.

О - середина АС, значит

ОВ = ОС = ОА.

Итак, AD = 2BC (по условию), AC = 2OC и  CD = 2OB, тогда

ΔADC подобен ΔСОВ по трем пропорциональным сторонам. Значит

∠ВСО = ∠DAC, а эти углы накрест лежащие при пересечении прямых AD и ВС секущей АС, значит BC║AD.

б) Коэффициент подобия треугольников ВОС и DAC:

k = 1/2

Площади подобных треугольников относятся как квадрат коэффициента подобия:

Sboc : Sdac = k² = 1/4

Т.е. Sdac = 4Sboc, тогда площадь пятиугольника AOBCD:

Saobcd = Sboc + Sdac = 5Sboc,

Sboc : Saobcd = 1 : 5

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны вектора a b и точка d не лежащие на прямой ab постройте вектора равные вектора ab . я 30
Ваше имя (никнейм)*
Email*
Комментарий*