Объяснение:
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
ответ 120, 120, 60, 60
Два шара.
Радиусы шаров равны 8,8 см и 6,6 см.
Найти:Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?
Решение:Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).
Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.
S полн поверхности = 4πR²
S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²
S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².
Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.
⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².
S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.
Итак, R₃ = 11 см.
ответ: 11 см.Поделитесь своими знаниями, ответьте на вопрос:
20 в трапеции abcd с прямым углом а проведена диагональ ас, уголacd=90градусов , уголвса=45градусов , ас=а. найдите [сb - са + cd] .
∠DAC=∠BCA=45 (накрест лежащие при AD||BC)
△ACD - прямоугольный с углом 45, равнобедренный, CA=CD
∠B=180-∠A=90 (сумма односторонних углов при параллельных равна 180)
△ABC - прямоугольный с углом 45, стороны относятся как 1:1:√2
CB= a√2/2
СB-CA+CD =CB =a√2/2