IAleksandrovna45
?>

Вравнобедренном треугольнике abc с основанием ac отрезок be-высота. найдите ∠ ebc, если ac=7, 4 см и ∠ abc=72 0

Геометрия

Ответы

Белов_Лукина1339
Угол авс делится по полам, так как высота = биссектрисе, 72:2=36 см
Лежачёва355
Sполн. пов= Sбок+Sосн
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l. 
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)
Дмитрий_Владимирович1162
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вравнобедренном треугольнике abc с основанием ac отрезок be-высота. найдите ∠ ebc, если ac=7, 4 см и ∠ abc=72 0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

guujuu
Zeegofer
vlrkinn
msburmis
Fetyukov
alaevluka77
sov0606332
Суховодова599
Okunev1034
Sergei-Gradus199
CafedeMinou
Larisa-0888716
Svetlana191
slonikkristi69
Galinova2911