mishamedbrat
?>

Найти площадь треугольника abc, если ba=10см, bc=8см, угол b=60°

Геометрия

Ответы

Владимир-Денисович1080
s = \frac{1}{2} \times a \times b \times \sin( \gamma )
где а и b - стороны треугольника, а гамма - угол между ними
Adabir20156806
1/2*10*8*корень из 3 на 2
Константин

Рассмотрим ∆ АВD и ∆ СВЕ

Оба прямоугольные и имеют общий острые угол АВС. 

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

Из подобия следует отношение 

ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒

ВЕ:ВС=ВD:АВ

Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий. 

2-й признак подобия треугольников:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны. 

Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать. 

Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС. 


Ad перпендикулярно вс; се перпендикулярно ав доказать, что треугольник авс подобен треугольнику dbe
Sknyajina5
Проведём сечение пирамиды через рёбра BS и ES.
Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ.
В сечении получим 2 треугольника: BSE и KME.
Ребро BS как гипотенуза равно 6√2.
КМ - это линия наибольшего наклона плоскости.
Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов.
Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4.
Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.

Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.

У трапеции нижнее основание АС равно
 AC = 2*6*cos30°  = 2*6*(√3/2) = 6√3.
Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF.
В плоскости ВSE верх трапеции - точка Н.
Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF.
В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам.
Сторона F₁B равна 6 + 3 = 9.
Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4.
Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6.
H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.

Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.

У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5.
Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2.
Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.

Площадь сечения равна:
 S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 =   40.41658.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти площадь треугольника abc, если ba=10см, bc=8см, угол b=60°
Ваше имя (никнейм)*
Email*
Комментарий*