gelena03
?>

Отрезок ав равный 98 см разделён на три части отрезка пропорциональных числам 2 4 8

Геометрия

Ответы

Anatolii
1) 2+4+8=14 частей
2) 98 : 14 = 7 (см) - 1 часть
2*7=14
4*7=28
8*7=56
ответ: 14; 28; 56.
sttig
) ABCDA1B1C1D1 - прямая призма, основание - ромб ABCD; ∠BAD = 60°; H = AA1 = 10
AB = BC = CD = AD = a; P = 4a = S(бок) /H = 24; a = 6
треугольники ABD и BCD - равносторонние
S(сеч) = S(BDD1B1) = BD·H = 6·10 = 60 (см²)
2) Если все боковые ребра пирамиды наклонены к плоскости основания (прямоугольный треугольник ABC, ∠B = 90) под одинаковым углом (90 - 45 = 45), то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр (точка O, лежит на середине гипотенузы) описанной около основания окружности.
AC = 2·4·tg(45) = 8
BC = AC·cos(30) = 4√3
AB = AC·sin(30) = 4
OH⊥AB; OH = BC/2 = 2√3
OK⊥BC; OK = AB/2 = 2
DH = √(OD² + OH²) = 2√7
DK = √(OD² + OK²) = 2√5
S(бок) = (1/2)(8·4 + (2√7)·4 + (2√5)·(4√3)) = 4(4 + √7 + √15) (см²) надеюсь
Pautova1119
Используем теорему Пифагора AB^2=AD^2+BD^2=9+BD^2 BC^2=DC^2+BD^2=4  ==>  BD^2 = 4-DC^2 подставим  в первое уравнение  AB^2 = 9+BD^2 = 9+4-DC^2 = 13 - DC^2 AB^2 + BC^2 = (AD+DC)^2  ==> AB^2=(AD+DC)^2-BC^2=(3+DC)^2-2^2=(3+DC)^2 - 4 следовательно можно приравнять правые части уравнений 13 - DC^2 = (3+DC)^2 - 4  ==> (3+DC)^2 - 4 - 13 + DC^2 =0  ==> 9+6*DC+DC^2 - 4 - 13 + DC^2 =0  ==> 2*DC^2 + 6*DC -8 =0 D=36-4*2*(-8)=36+64=100=10^2 DC=(-6+10)/(2*2)=4/4=1 AB^2 = 13 - DC^2 = 13 - 1 = 12   ==>  AB=2*3^(1/2) BD^2=AB^2-9 = 12 - 9 =3  ==> DB=3^(1/2) 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Отрезок ав равный 98 см разделён на три части отрезка пропорциональных числам 2 4 8
Ваше имя (никнейм)*
Email*
Комментарий*