угол MBC = 30°
угол ВCA = 60
Объяснение:
Дано:
АВС - треугольник
АМ = СМ
уг. АВС = 60°
уг. ВМА = 90°
-------------
Найти
уг. МВС - ?
уг. ВСА - ?
Решение
угол ВМА = 90° => уг. ВМС = 90°
т.е. ВМ | АС, а значит,
ВМ - высота, проведенная из вершины В на АС.
Также АМ = МС, а значит
ВМ - медиана, проведенная из вершины В на АС.
Если медиана треугольника является его высотой, то этот треугольник - равнобедренный.
ВМ - высота и медиана ∆АВС, =>
=> ∆АВС - равнобедренный, основание АС =>
=> ВМ - также является биссектрисой ∆АВС, т.е.
уг. АВМ = уг. СВМ
Так, как ∆АВС - равнобедренный, с основанием АС, то углы при основании - равны друг другу
уг. ВАС = уг. АСВ
и равны
угол ВАС = угол ВСА = 1/2 • (180 - угол АВС)
угол ВАС = угол ВСА = 1/2 • (180 - 60) = 60°
а значит ∆АВС - равносторонний.
угол MBC = 30°
угол ВCA = 60°
Поделитесь своими знаниями, ответьте на вопрос:
в параллелограмме bcde биссектриса угла e пересекает сторону bc в точке h , причем bh = 9, ch = 8.найдите периметр параллелограмма
Т.к. EH бисс.=>угол BEH=45°.
Треуг.ВЕН прямоуг.=>угол ВНЕ=90°-45°=45°
Т.к. угол ВНЕ=углу ВЕН=>треуг ВЕН равноб.=>ВН=ВЕ=9 см
Рпар-ама=2*(ВС+ВЕ)=2*(9+8+9)=2*26=52(см)
ответ:52 см