Пользуясь рисунком, (см. вложение) и зная, что — диаметр окружности, — хорда окружности, определим .
В окружности половиной диаметра являются радиусы, значит, эти радиусы будут равны и хорде:
В образовавшемся треугольнике получается, что все три стороны по длине равны, следовательно, этот треугольник является равносторонним, у которого все углы равны по .
Как известно, точка касания касательной к окружности и радиуса окружности пересекаются под прямым углом ().
Отсюда следует, чтобы узнать , нужно найти разность развёрнутого угла () от суммы других известных углов:
ответ: 30°
а) У равнобедренного треугольника углы при основании равны; Пусть угол при основании - х, тогда
х+х+30=180(сумма всех углов треугольника = 180°)
2х+30=180
2х=150
х=75
ответ: угол при основании равен 75°
б) 2 варианта решения:
1) Если угол при вершине, противолежащий основанию = 40°, тогда угол при основании - х
2х+40=180
2х=140
х=70;
ответ: остальные углы равны 70°
2) Если угол при основании = 40°, тогда второй угол при основании также равен 40°. Пусть угол противолежащий основанию - х, тогда
40+40+х=180
80+х=180
х=180-80
х=100; ответ: угол, противолежащий основанию равен 100°
в) Угол при основании равен 30°, тогда второй угол при основании также равен 30°(т.к. треугольник равнобедренный)
пусть угол, противолежащий основанию - х, тогда
30+30+х=180
60+х=180
х=180-60
х=120
ответ: угол, противолежащий основанию равен 120°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите угол между касательной и хордой, которые проведены из одной точки, если хорда равна половине диаметра окружности.
Очевидно, этот угол равен 30 градусам. Длина хорды равна радиусу. Треугольник с вершинами : центр окружности , концы хорды -равносторонний. Одна из его сторон перпендикулярна касательной. Отсюда ответ: 90-60=30.