FATAHOVAMAINA
?>

Добрые люди ! 30 ! в равнобедренном треугольнике авс ab=bc=30 см, а расстояние от вершины b до точки пересечения биссектрис равно 15 см. найдите периметр треугольника.

Геометрия

Ответы

Igorevich_Aleksandrovna1599

Надеюсь решила, правильно)

Решение: точка О - центр вписанной окружности радиусом r

Точка F - основание высоты равнобедренного треугольника на стороне ac

из точки Е на стороне ab - высоту треугольника abO. ее длинна равна r

Треугольники abF и ebO - подобны по двум углам.

Пропорция Fb/ab = eb/Ob

Fb=Ob+FO=15+r

ab=30

Ob = 15         

          (15+r)/30 =  / 15

После приведения

           225+30r+ = 900 - 4

           + 6r -135 =0

Решение квадратного уравнения - два ответа: 9 и -15

r = 9

Зная радиус находим длину биссектрисы Fb = 15+9 =24

В треуг. abF по теореме Пифагора сторона af = 18

P = 30+30+18*2 = 96

ответ:96

sanhimki47

Построение сводится к проведению перпендикуляра из  точки к прямой. 

Из вершины А, как из центра,  раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим  эту точку К.

∆ КАС- равнобедренный с равными сторонами АК=АС.

Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой. 

Для этого из точек К и С, как из центра,  одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А. 

Отрезок АМ разделил КС пополам и является  искомой высотой ∆ АВС из вершины угла А. 

НосовЖелиховская
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Добрые люди ! 30 ! в равнобедренном треугольнике авс ab=bc=30 см, а расстояние от вершины b до точки пересечения биссектрис равно 15 см. найдите периметр треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*