В треугольнике ABC, периметр которого равен 20 см ,вписан круг. Отрезок касательной проведенной к окружности параллельно стороне AC, размещенной между сторонами треугольника, равен 2,4 см. Найдите сторону AC.
Объяснение:
Пусть отрезок касательной проведенной к окружности параллельно стороне AC будет МК , МК=2,4 см.
Пусть точки касания располагаются так :
А-Р-В ,А-Е-С , В-Н-С , М-О-К.
ΔВМК подобен ΔВАС по двум углам : ∠ВМК=∠ВАС как соответственные и ∠В- общий.
Поэтому Р(МВК):Р(АВС)=к=МК:АС.
Выразим 1)Р(МВК), 2)АС используя свойство отрезков касательных.
1)Р(МВК)=2,4+МВ+ВК=
=2,4+(ВР-МР)+(ВН-КН)=
=2,4+(ВР-МО)+(ВН-КО)=
=2,4+(ВР+ВН)-(МО+КО)=
=2,4 +2ВР-2,4=2ВР.
Значит Р(МВК) =2ВР.
2)Р(АВС)=АВ+ВС+АС=
=(ВР+РА)+(ВН+НС)+АС=
=(ВР+АЕ)+(ВН+ЕС)+АС=
=(ВР+ВН)+(АЕ+ЕС)+АС=
=2ВР+2АС,
20=2ВР+2АС, 10=ВР+АС, ВР=10-АС.
Т.о Р(МВК):Р(АВС)=МК:АС ,
2ВР:20=2,4:АС,
АС*ВР=24 ( но ВР=10-АС), пусть АС=в ,
в(10-в)=24,
в²-10в+24=0, D=4 , в₁=4, в₂=6
АС=4см, Ас=6 см
В треугольнике ABC, периметр которого равен 20 см ,вписан круг. Отрезок касательной проведенной к окружности параллельно стороне AC, размещенной между сторонами треугольника, равен 2,4 см. Найдите сторону AC.
Объяснение:
Пусть отрезок касательной проведенной к окружности параллельно стороне AC будет МК , МК=2,4 см.
Пусть точки касания располагаются так :
А-Р-В ,А-Е-С , В-Н-С , М-О-К.
ΔВМК подобен ΔВАС по двум углам : ∠ВМК=∠ВАС как соответственные и ∠В- общий.
Поэтому Р(МВК):Р(АВС)=к=МК:АС.
Выразим 1)Р(МВК), 2)АС используя свойство отрезков касательных.
1)Р(МВК)=2,4+МВ+ВК=
=2,4+(ВР-МР)+(ВН-КН)=
=2,4+(ВР-МО)+(ВН-КО)=
=2,4+(ВР+ВН)-(МО+КО)=
=2,4 +2ВР-2,4=2ВР.
Значит Р(МВК) =2ВР.
2)Р(АВС)=АВ+ВС+АС=
=(ВР+РА)+(ВН+НС)+АС=
=(ВР+АЕ)+(ВН+ЕС)+АС=
=(ВР+ВН)+(АЕ+ЕС)+АС=
=2ВР+2АС,
20=2ВР+2АС, 10=ВР+АС, ВР=10-АС.
Т.о Р(МВК):Р(АВС)=МК:АС ,
2ВР:20=2,4:АС,
АС*ВР=24 ( но ВР=10-АС), пусть АС=в ,
в(10-в)=24,
в²-10в+24=0, D=4 , в₁=4, в₂=6
АС=4см, Ас=6 см
Поделитесь своими знаниями, ответьте на вопрос:
№1. сторона треугольника равна 12 см, а высота, проведенная к ней, в три раза меньше стороны. найдите площадь треугольника. № 2. один из катетов прямоугольного треугольника равен 12 см, а гипотенуза 13 см. найдите второй катет и площадь этого треугольника. № 3. диагонали ромба равны 10 и 12 см. найдите его площадь и периметр. № 4*. в прямоугольной трапеции авсе большая боковая сторона равна 8 см, угол а равен 60, а высота вн делит основание ав пополам. найдите площадь трапеции.
№1
Дано: а=12 см, h=а/3
Найти: S
Решение
1) h= 12 см :3 = 4 см
2) S=(a*h):2
S= (4 см * 12 см): 2 = 24 см2
ответ: 24 см2
№2
Дано: AB=12, BC=13, ∠A=90°
Найти: АС, S
Решение.
1) По т. Пифагора:
AC^2=BC^2-AB^2;
AC^2= 169-144;
AC^2=25;
AC=5 см.
2) S=(AC*AB):2
S=(5 см * 12 см) : 2 = 30 см2.
ответ: 1) 5 см; 2) 30 см2.
№3.
Дано: a=10 см, b=12 см
Найти: S, P
Решение.
1) S=(ab):2
S= (10см * 12 см) : 2 = 60 см2.
2) В треугольнике ABC: ∠A=90°, AB=a:2=10:2=5 см, AC=b:2=12:2=6 см
По теореме Пифагора:
BC^2=AB^2+AC^2;
BC^2=25+36;
BC^2=61;
BC=√61см.
P=4*BC
P=4√61см.
ответ: 1) 60 см2; 2)4√61см.
А №4 я не поняла, извините