По теореме косинусов
AB^2= AC^2 +BC^2 -2AC*BC*cos150 =27 +4 +18 =49 <=> AB=7
Или
BH - высота на AC, ∠BCH=180-150=30
△CBH - углы 30, 60, 90, стороны относятся как 1:√3:2
BH=1, CH=√3
AH=AC+CH =3√3 +√3 =4√3
По теореме Пифагора
AB=√(AH^2 +BH^2) =√(48+1) =7
Дано:
прямоугольный треугольник АВС.
Высота из прямого угла ВН
НС=АН+11
ВС/АВ=6/5
1. Обозначим отрезок АН за х, тогда НС=х+11
По теореме Пифагора ВС²+АВ²=АС²
Выразим длины катетов через а:
ВС=6*а, АВ=5*а
(6а)² + (5а)² = (2х+11)²
61а²=(2х+11)²
2. Выразим высоту h через треугольник АВН: h²=25a²-x²
и подставим полученное значение в треугольник ВНС:
h²+(x+11)²=36a²
25a²-x² + (x²+22x+121)=36a²
сокращаем выражение и получаем: а²=2х+11
3. Подставляем выражение, полученное во втором действии в выражение, полученное в первом действии:
61(2х+11)=(2х+11)²
61=2х+11
Заметим, что 2х+11=с - гипотенуза треугольника АВС.
ответ: с=61 см.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc известны стороны ас=3√3, bc=2, и угол при вершине с равен 150 градусов. найдите длину стороны ав. с
Потеор.косинусов АВ^2=AC^2+BC^2-2AC*BC*cos150=27+4-2*3V3*2(-V3 /2)=31+18=49, AB=7