lilit-yan
?>

Втреугольнике bcd стороны bd и cd равны dm медиана угол bdc равен 42 найдите углы bmd и bdm

Геометрия

Ответы

inessa12006

BMD=90°; BDM=21°.....


Втреугольнике bcd стороны bd и cd равны dm медиана угол bdc равен 42 найдите углы bmd и bdm
Борисовна_Дмитриевич1003
Площади подобных многоугольников относятся как квадрат коэффициента подобия
k² = S₂/S₁ = 10/9
k = √(10/9) = √10/3
Периметры подобных многоугольников относятся как коэффициент подобия
k = P₂/P₁ = √10/3
P₂ = P₁*√10/3
И по условию разность периметров равна 10 см
P₂ - P₁ = 10

P₁*√10/3 - P₁ = 10
P₁(√10/3 - 1) = 10
P₁ = 10/(√10/3 - 1)
Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1)
P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см

P₂ - P₁ = 10
P₂ =  P₁ + 10 = 30√10 + 100 см
vitalis79
Площади подобных многоугольников относятся как квадрат коэффициента подобия
k² = S₂/S₁ = 10/9
k = √(10/9) = √10/3
Периметры подобных многоугольников относятся как коэффициент подобия
k = P₂/P₁ = √10/3
P₂ = P₁*√10/3
И по условию разность периметров равна 10 см
P₂ - P₁ = 10

P₁*√10/3 - P₁ = 10
P₁(√10/3 - 1) = 10
P₁ = 10/(√10/3 - 1)
Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1)
P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см

P₂ - P₁ = 10
P₂ =  P₁ + 10 = 30√10 + 100 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике bcd стороны bd и cd равны dm медиана угол bdc равен 42 найдите углы bmd и bdm
Ваше имя (никнейм)*
Email*
Комментарий*