Пусть высота треугольника равна x, тогда сторона равна 2x
S=ah/2
S=(2x*x)/2
64=x^2 => x=8
Сторона равна 2x=16
№4
Пусть высота Ромба Хсм.
Тогда его площадь
6,5 Х =26
отсюда Х= 26 : 6,5 = 4см
ответ 4см
Поделитесь своими знаниями, ответьте на вопрос:
Вправильной треугольной призме сторона основания равна a, боковое ребро равна b. найдите площадь сечение призмы плоскостью, проходящей через сторону основания и средину противолежащего бокового ребра
1) введем обозначение МАВСД - данная пирамида. МО- высота. Высоту боковой грани МК оозначим за х, тогда сторона основания будет равна АВ=2√(x²-9)
из формулы площади боковой поверхности находим:
S=2AB*MK=4√(x²-9)*x
8=4√(x²-9)*x
4=(x²-9)*x²
x^4-9x²-4=0
x²1=(9+√97)/2
x1=√((9+√97)/2)
x²2=(9-√97)/2; посторонний корень.
Cедовательно АВ=2√((√97-9)/2)
Тогда объем пирамиды будет равен:
V=1/3*(√97-9)/2*3=(√97-9)/2
2)
пусть х-сторона основания, тогда высота сечения h=x√6/2, из площади сечения находим:
S=1/2*x*h
4√6=x²*√6/4
x=4
Тогда высота призмы будет Н=х√3=4√3
V=1/2*4*4*√3/2*4√3=48