Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.
Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.
А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.
Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.
Выразим площадь прямоугольника АВС:
С другой стороны можно S=p×r
Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=3 см.
ответ: 3 см.
Поделитесь своими знаниями, ответьте на вопрос:
Напишите уравнение окружности, проходящей через точки a (-3; 0) и b (0; 9), если известно, что центр окружности лежит на оси ординат
Уравнение выглядит так:
(-3)^2+(0-y)^2=r^2
0^2+(9-y)^2=r^2
Отсюда приравниваем:
9+y^2=81-18y+y^2
-72+18y=0
18y=72
y=4
Следовательно центр окружности: (0;4)
Отсюда радиус окружности равен: корень((-3)^2+(0-4)^2)=5
И уравнение: x^2+(y-4)^2=25