Сергей_Комарова899
?>

:диагонали ромба 12 и 16 см. найдите синус его острого угла.

Геометрия

Ответы

annanas08
Средняя линия разделена на два отрезка. Первый длиной 5,5- средняя линия треугольника, поэтому верхнее основание в два раза большей средней линии треугольника и равно11
Нижнее основание в два раза больше средней линии другого треугольника и равно 25

Угол 1 равен углу 2 так как диагональ биссектриса
Угол 3 равен углу 1 как внутренние накрест лежащие
Значит угол 2 равен углу 3
Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25

Проведем высоты с вершин верхнего основания на нижнее.
Получим два равнобедренных треугольника, с катетами (25-11):2=7
По теореме Пифагора высота
h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24²
h=24
S=(a+b)·h/2=(11+25)·24/2=432 кв. см

Решите, ! в равнобокой трапеции диагональ является биссектрисой тупого угла и делит среднюю линию на
kotovayaanastasia2069

1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то  CO ⊥ AB.  Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно,  ∠ACB = 2∠BCO = 2·40° = 80°.

ответ: 80°.

2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒ 

АС=ВС=20:2=10 

ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный. 

Углы при основании равнобедренного треугольника равны. 

∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°

ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных. 

 СО=АС=СВ=10 см

ответ. 10 см.

3. Вот так. Только во второй задаче бери радиус больше половины отрезка

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

:диагонали ромба 12 и 16 см. найдите синус его острого угла.
Ваше имя (никнейм)*
Email*
Комментарий*