Вравнобедренном треугольнике авс с основанием ас проведена биссектриса сд угла с. на прямой ас отмечена точка е так, что угол едс=90°. найдите отрезок ес, если ад=1см
∠А + ∠ В + ∠С = 180°, откуда ∠ В = 180° - ∠А - ∠С, но т.к. ΔАВС - равнобедренный, и значит, ∠А = ∠С, получаем:
∠ В = 180° - 2∠А
Подставим это выражение в формулу для внешнего угла β, получим:
β = 180° - 180° +2∠А
β= 2∠А, ч. т. д.
ylia89
23.05.2020
1) △BAO, △BCO равнобедренные (AE, EC являются одновременно медианами и высотами) => BA=OA, BC=OC OA=OB=OC (радиусы окружности) OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60) ∠ABC=∠ABO+∠OBC=120 ∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180) ∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC AH=AC/2 (в равнобедренном треугольнике высота является медианой) AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис. Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины. BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4 r= OH = BH*4/9 =4
Вравнобедренном треугольнике авс с основанием ас проведена биссектриса сд угла с. на прямой ас отмечена точка е так, что угол едс=90°. найдите отрезок ес, если ад=1см
Объяснение:
Пусть дан ΔАВС, В - вершина треугольника, АС - основание ΔАВС,
АВ =ВС, ∠А и ∠С - углы при основании.
1) Внешний угол при вершине равнобедренного ΔАВС (обозначим его как β) и внутренний ∠В - смежные углы, и их сумма равна 180° .
Значит, внешний угол β = 180° - ∠В.
2) сумма углов треугольника = 180 °. Следовательно ,
∠А + ∠ В + ∠С = 180°, откуда ∠ В = 180° - ∠А - ∠С, но т.к. ΔАВС - равнобедренный, и значит, ∠А = ∠С, получаем:
∠ В = 180° - 2∠А
Подставим это выражение в формулу для внешнего угла β, получим:
β = 180° - 180° +2∠А
β= 2∠А, ч. т. д.