Относительно: 1)начала координат:
А(0; 1) А1 (0; -1)
В(2; 1) В1(-2; -1)
С(-2; 3) С1(2; -3)
2) оси Ох:
А(0; 1) А1 (0; -1)
В(2; 1) В1(2; -1)
С(-2; 3) С1(-2; -3)
3) оси Оу.:
А(0; 1) А1 (0; 1)
В(2; 1) В1(-2; 1)
С(-2; 3) С1(2; 3)
А(2;1), B(5;4), C(11;-2), D(8;-5).1)Определите координаты центра симметрии.
Центр симметрии находится на середине диагонали, например, АС,:
О((2+11)/2=6,5; (1+(-2))/2=-0,5) = (6,5; -0,5)
2) Уравнение осей симметрии этого прямоугольника:
Оси параллельны сторонам и проходят через центр симметрии.
Уравнение прямой АВ:
.
Выразим относительно у:
.
В уравнении оси коэффициент при х равен коэффициенту прямой АВ и равен 1.
Уравнение оси имеет вид у = х + в.
Для нахождения параметра в поставим координаты центра в полученное уравнение: -0,5 = 6,5 + в.
Отсюда в = -0,5 - 6,5 = -7.
Получаем уравнение оси симметрии, параллельной стороне АВ: у = х - 7.
Уравнение прямой ВС:
В уравнении оси коэффициент при х равен коэффициенту прямой DC и равен -1.
Уравнение оси имеет вид у = -х + в.
Для нахождения параметра в поставим координаты центра в полученное уравнение: -0,5 = 6,5*(-1) + в.
Отсюда в = -0,5 + 6,5 =6.
Получаем уравнение оси симметрии, параллельной стороне АВ: у = -х + 6.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике авс медианы пересекаются в точке о. найдите расстояние от точки o до точки b если ab=bc=10, ac=10
Формула медианы треугольника
m=0,5*√(2а²+2b²-c²), где а и b- боковые стороны, с- сторона, к которой медиана проведена.
Произведя вычисления, получим длину медианы 5 см.
Но, обратив внимание на отношение сторон 6:8:10=3:4:5, увидим, что данный треугольник - египетский, следовательно, прямоугольный с прямым углом В, АС в нем - гипотенуза.
Медиана прямоугольного треугольника из прямого угла равна половине гипотенузы.
m=10:2=5 см
Проверка:
АВ+ВМ+МА=6+5+5=16 см ( периметр треугольника АВМ)
Ещё один
ВМ - медиана и делит сторону АС пополам.
СМ=АМ=10:2=5 ( см)
Р Δ АВМ=16 см
Р Δ АВМ=ВМ+АМ+АВ
16= ВМ+5+6
ВМ=16-11=5 ( см)
Объяснение: