Grigorevna23
?>

Найдите величину(в градусах) вписанного угла а, опирающигося на хорду ав, равную радиусу окружности

Геометрия

Ответы

Tsibrova
Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. 
Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. 
Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: 
AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. 
Пусть АЕ=Y. 
Периметр треугольника AB+BE+AE=4X+4X+Y 
Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X 
Разность периметров (Y+18X)-(Y+8X)=10X. 
10X=10, X=1. 
Периметр параллелограмма 2*(4X+9X)=26X=26.
Вроде так.
aa276568

Из вершины прямого угла С проведена высота CD, равная 12 см. Катет ВС = 20 см. Найдите BD, АВ и cosА.

============================================================

ΔABC - прямоугольный, CD⊥ABВ ΔBCD: по т. ПифагораBD² = BC² - CD² = 20² - 12² = 400 - 144 = 256BD = 16 смСвойства прямоугольного треугольника:1. Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.2. Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.CD² = AD • BD  ⇒  AD = CD²/ BD = 12²/16 = 144/16 = 9 смAB = AD + BD = 9 + 16 = 25 см▪Если в прямоугольном треугольнике высота опущена из вершины прямого угла на гипотенузу, то высота делит этот треугольник на 3 пары подобных прям. треугольников.Значит, ∠CAD = ∠BCD  cos∠CAD = cos∠BCD = CD/BC = 12/20 = 6/10 = 0,6ОТВЕТ: BD = 16 см, АВ = 25 см, cosA = 0,6
Из вершины прямого угла с проведена высота cd, равная 12см. катет вс=20см. найдите bd, ав и cos а
Из вершины прямого угла с проведена высота cd, равная 12см. катет вс=20см. найдите bd, ав и cos а

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите величину(в градусах) вписанного угла а, опирающигося на хорду ав, равную радиусу окружности
Ваше имя (никнейм)*
Email*
Комментарий*