Дано: ABC - равнобедренный треугольник; AB = BC = 13дм, АС = 10см. Найти: решение: У равнобедренного треугольника боковые стороны и углы при основания равны С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки: С прямоугольного треугольника ABK ( ∠AKB=90°): По т. Пифагора высота ВК равна: Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2 Синус угла - это отношение противолежащего катета к гипотенузе: Косинус угла - это отношение прилежащего катета к гипотенузе: Тангенс угла - это отношение противолежащего катета к прилежащему катету Котангенс угла - это отношение прилежащего катета к противолежащему катету
kormilitsynarita
12.09.2022
Решение: Так как боковые грани наклонены под одним и тем же углом, то высота пирамиды проецируется в центр вписанной окружности. А так как треугольник в основании правильный то: r=a√3/6=√3/2 Следовательно высота пирамиды лежит против угла 45° и она равна: h=√3/2 Найдем площадь основания: S1=0,5a²*sin60°=0,5*9*√3/2=9/4*√3 Найдем площадь боковой поверхности, для этого найдем высоту бокой грани: h1=√(3/4+3/4)=√(3/2) S2=0,5*3a*h1=0,5*3√3/2*√(3/2)=9/8*√2 Итак площадь полной поверхности равна: S=S1+S2=9/4*√3+9/8*√2
Объяснение:
2х+3у=180
180÷5
36
36×2=72это угол х
36×3=108 это угол у