1. От точки А строим угол, равный данному (описано в первом
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.
Поделитесь своими знаниями, ответьте на вопрос:
Упрямокутному трикутнику гіпотенуза =75см.а косинус одного з кутів 7/25.знайти периметр трикутника
х+х+2х+2х=48
6х=48
х=8
8 см одна сторона
8*2=16 см другая сторона
2. Параллелограмм АBCD, биссектриса АК
Угол ВАК = углу КАD, т.к. биссектриса АК делит угол ВАD пополам.
Угол КAD = углу BKA, т.к. они накрест лежащие при AD параллельном ВС и секущей АК.
Значит, угол ВАК = углу ВКА, т.к. все эти три угла равны между собой.
Значит, треугольник АВК равнобедренный, т.к. углы при основании равны.
Значит, АВ=ВК=7 см
7+14=21 см другая сторона параллелограмма
7+7+21+21=56 см периметр параллелограмма.