Все четыре стороны равны 5 см, четырехугольник квадрат или ромб. Определим длины диагоналей.
АС2 = (5 – (-3))2 + (-1 – (-1))2 = 64 + 0 = 64.
АС = 8 см.
ВД2 = (1 – 1)2 + (-4 – 2)2 = 0 + 36 = 36.
ВД = 6 см.
Диагонали разной длины, следовательно, четырехугольник ромб, что и требовалось доказать.
aprelevka
06.11.2021
В треугольнике: катеты а и b, гипотенуза с, прямой угол С, R - радиус описанной окружности, r- радиус вписанной окружности. Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r. Тогда отрезки катетов, прилегающих к вершинам острых углов, равны (а - r) и (b - r). Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r). Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r. Но ранее мы получили, что с = 2R Тогда 2R = a + b - 2r 2R + 2r = a + b R + r = 0.5(a + b) что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Начертите угол mpk, равный 68 градусам, и вертикальный с ним угол apb. а) начертите биссектрису угла apb. б) найдите градусную меру угла образованного построенной биссектрисой и лучом bm
По данным координатам вершин определим длины их его сторон.
АВ2 = (Х2 – Х1)2 + (У2 – У1)2 = (1 – (-3))2 + (2 – (-1))2 = 16 + 9 = 25.
АВ = 5 см.
ВС2 = (5 – 1)2 + (-1 – 2)2 = 16 + 9 = 25.
ВС = 5 см.
СД2 = (1 – 5)2 + (-4 – (-1))2 = 16 + 9 = 25.
СД = 5 см.
АД2 = (1 – (-3))2 + (-4 – (-1))2 = 16 + 9 = 25.
АД = 5 см.
Все четыре стороны равны 5 см, четырехугольник квадрат или ромб. Определим длины диагоналей.
АС2 = (5 – (-3))2 + (-1 – (-1))2 = 64 + 0 = 64.
АС = 8 см.
ВД2 = (1 – 1)2 + (-4 – 2)2 = 0 + 36 = 36.
ВД = 6 см.
Диагонали разной длины, следовательно, четырехугольник ромб, что и требовалось доказать.