Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
S(MNPK) = 39*2 = 78.
ответ: 78 (ед^2).
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
Поделитесь своими знаниями, ответьте на вопрос:
Дана равнобокая трапеция abcd с большим основанием [ad] . найдите величины углов трапеции , если ad = 2bc и [ac - биссектриса угла bad
Пусть ∠BAC = α (∠BAD = 2α). Проведём через С прямую, параллельную АВ. Пусть она пересекает AD в точке Х. Тогда ABCX - параллелограмм. Значит противоположные стороны равны: BC = AX. AD в 2 раза больше BC, которое равно AX, значит X - середина AD. ∠ACX = ∠CAB = α = ∠CAX, значит AX = CX = AB. При этом AB = CD, т. к. трапеция равнобокая, значит XD=DC=CX, т. е. ΔXDC - равносторонний. Значит ∠ADC = 60°, ∠DAB = ∠ADC, т. к. трапеция равнобокая, т. е. ∠DAB = 60°, ∠ABC = ∠BCD = 180°-60° = 120° по свойству трапеции
ответ: ∠ABC=∠BCD=120°, ∠CDA=∠DAB=60°