Здесь нужно вспомнить о средней линии треуг-ка. Средняя линия тр-ка - это отрезок, соединяющий середины двух его сторон. Средняя линия параллельна третьей стороне и равна ее половине. MN, NP и РМ - средние линии треуг-ка АВС. Теперь смотрим на наш треуг-к.
В тр-ке MNP и CPN сторона NP общая. NC=1/2BC так как N середина ВС, МР=1/2ВС так как МР - средняя линия. Значит MP=NC. РС=1/2АС так как Р - середина АС, MN=1/2AC так как MN - средняя линия. Значит MN=PC. Получили, что три стороны одного тр-ка соответственно равны трем сторонам другого тр-ка, значит тр-ки равны по 3 признаку.
Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Підставимо значення проекцій і вирішимо рівняння відносно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см
Поделитесь своими знаниями, ответьте на вопрос:
Дан равнобедренный треугольник abc, с основанием ac, у которого ab=12 см, угол а + угол в = 105 градусов
Дано:
ΔABC-равнобедренный
АВ=12см
∠А+∠В=105°
Найти: S ABC-?
∠C=180°-(∠A+∠B)=180°-105°=75°
∠A=∠С=75°; AB=BC=12см (т.к. ΔАВС-равноб.)
∠В=180°-∠А-∠С=180°-75°-75°=30°
S ABC=1/2×sin∠B×AB×BC=1/2×1/2×12×12=36см²
ответ: S ABC=36см²