Самая распространенная формула для вычисления площади трапеции - S = (a+b)h/2. Для случая равнобедренной трапеции она явным образом не поменяется. Можно лишь отметить, что у равнобедренной трапеции углы при любом из оснований будут равны (DAB = CDA = x). Так как ее боковые стороны тоже равны (AB = CD = с), то и высоту h можно посчитать по формуле h = с*sin(x).
Тогда S = (a+b)*с*sin(x)/2.
Аналогично, площадь трапеции можно записать через среднюю сторону трапеции: S = mh.
h = диаметру окружности, т. е 6
итак площадь = 6*10=60
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
Поделитесь своими знаниями, ответьте на вопрос:
Помгите.29 кути bad і bce – зовнішні кути трикутника abc. із вершини b проведено перпендикуляри bm і bk до бісектрис кутів bad і bce відповідно. знайдіть відрізок mk, якщо периметр трикутника abc дорівнює 10 см.
ответ: 5 см
Объяснение:
Углы ВАD и ВСЕ - внешние углы треугольника АВС. Из вершины В проведены перпендикуляры ВМ и ВК к биссектрисам углов ВАD и все соответственно. Найти отрезок МК, если периметр треугольника АВС равен 10 см
* * *
Продолжим ВМ и ВК до пересечения в т.Р и т.Т с прямой, содержащей сторону АС. В треугольнике РАВ отрезок АМ биссектриса угла РАВ, угол РМА=ВМА=90°. Треугольники РАМ и ВАМ равны по двум углам, прилежащим к общей стороне АМ. Следовательно, РА=АВ и РМ=МВ ( точка М - середина РВ).
Аналогично в ∆ ВСТ ВК=ТК и СТ=ВС, а точка К - середина ВТ. Отрезок МК - средняя линия ∆ РВТ.
Поэтому РА+АС+СТ=ВА+АС+ВС=периметр АВС. МК=Р(АВС):2=10:2=5 см