Пусть в треугольнике АВС медиана ВМ к стороне АС. Тогда угол ВМА равен альфа, а угол ВМА равен 180°-альфа. Мы знаем, что cos(180-a)=-cosa. Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20). В треугольнике АВС по теореме косинусов имеем: АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1) В треугольнике ВМС по этой же теореме: ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2). Представим в (1) и (2) известные значения и просуммируем оба уравнения. Тогда получим: х^2=125-100Cosa + (22-x)^2=125+100Cosa равно х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х. х^2-22х+117=0. Х1=11+√(121-117)=13. Х2=11-2=9. ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.
alislisa191
22.01.2021
В сечении имеем равнобедренный треугольник KSM. Основание его KM равно половине диагонали основания: КМ = 3√2/2. KS и MS - это высоты h1 боковых граней. KS = MS = √(5² - (3/2)²) = √(25 - (9/4)) = √22,75 ≈ 4,7697. Искомую площадь треугольника KSM можно определить двумя - по формуле Герона, - по высоте h2 и основанию.
По формуле Герона: р = (2*4,7697 + (3√2/2))/2 ≈ 5,8303562. S = √(p(p-a)(p-b)(p-c). Подставив данные, получаем S = 4,93235491 кв.ед.
Высота h2 сечения равна: h2 =√(4,7697² - ((3√2/2)/2)²) ≈ 4,650269. S = (1/2) KM*h2 = (1/2)(3√2/2)* 4,650269 ≈ 4,932355 кв.ед.
ответ:
давай через 15 мин я прид оок
объяснение: