Обозначим биссектрису СК. Одно из свойств биссектрисы: отношение отрезков, на которые биссектриса делит сторону, противоположную углу, из которого проведена, равно отношению сторон, содержащих этот угол.
АК:ВК=АС:ВС
Пусть коэффициент этого отношения а.
Тогда АК=8а, ВК=6а
Отношение ВС:АС =3:4 - отношение катетов египетского треугольника, поэтому гипотенуза АВ=10 см
АВ по т.Пифагора АВ также найдем равной 10 см.
а=АВ:(8+6)=5/7 Отсюда
АК=8•4/7=40/7
sin A=BC:AB=6:10=0,6
По т.синусов
СК/sin∠CAK=AK/sin∠ACK
CK:0,6=40/7):√2/2
CK=48:7√2=24√2):7= ≈4,849 см
-------------
Примечание: для биссектрисы треугольника есть формула. В частности, для прямоугольного треугольника нахождение биссектрисы через катеты она дана в приложении с рисунком.
morozova4956
05.10.2020
Острый угол трапеции равен 180° - 135° = 45° опустив высоту из тупого угла трапеции на большее основание, видим, что высота трапеции, равная перпендикулярной боковой стороне, равна разности большего и меньшего оснований: 12дм - 8дм = 4дм, т.к. получившийся треугольник равнобедренный . Наклонная боковая сторона равна 4дм : cos45° = 4 : 0.5√2 = 4√2 (дм) Периметр трапеции: 8 + 12 + 4 + 4√2 = 24 + 4√2 (дм) ≈ 24 + 5,41 = 29,41 (дм) Площадь трапеции равна полусумме оснований, умноженной на высоту 0,5(12 + 8)· 4 = 40(дм²)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
2. на стороне kl квадрата mnkil лежит точка e так, что ke=el, o – точкапересечения диагоналей. выразите векторы no, ne, em через векторы х=nmи ў=nk.
Обозначим биссектрису СК. Одно из свойств биссектрисы: отношение отрезков, на которые биссектриса делит сторону, противоположную углу, из которого проведена, равно отношению сторон, содержащих этот угол.
АК:ВК=АС:ВС
Пусть коэффициент этого отношения а.
Тогда АК=8а, ВК=6а
Отношение ВС:АС =3:4 - отношение катетов египетского треугольника, поэтому гипотенуза АВ=10 см
АВ по т.Пифагора АВ также найдем равной 10 см.
а=АВ:(8+6)=5/7 Отсюда
АК=8•4/7=40/7
sin A=BC:AB=6:10=0,6
По т.синусов
СК/sin∠CAK=AK/sin∠ACK
CK:0,6=40/7):√2/2
CK=48:7√2=24√2):7= ≈4,849 см
-------------
Примечание: для биссектрисы треугольника есть формула. В частности, для прямоугольного треугольника нахождение биссектрисы через катеты она дана в приложении с рисунком.