Задачи №1 - №3 решены Пользователем Fialka7 Умный
Добавлено решение задачи №4.
№1
Р = 36 см . Находим боковые стороны - они равны, значит а=(36-10)/2=13 см. Проводим высоту к основанию ВН. ВН²=13²-(10/2)²=144=12². S=BH*AC*1/2=12*10/2=60cм²
№2.
Р=24=а*4 а=6 см -сторона ромба. S=a²*sinA 18=36*sinA sinA=1/2 ∠А=30°, другой угол= 180-30=150°. ответ: 30°, 150°, 30°,150°.
№3
ищем сторону а. а=(128-48)/2=40см -боковая сторона. r=S/p где р-это полупериметр. р=128/2=64. Ищем S. Проведем высоту ВН.
ВН²=40²-24²=1024=32². BH=32 см, S=32*48*1/2=768 см². r=768/64=12 см. ответ: 12 см.
№4
∠BAC = ∠DAC так как диагональ АС является биссектрисой угла А,
∠DAC = ∠BCA как накрест лежащие при пересечении параллельных прямых ВС и AD секущей АС, ⇒
∠ВАС = ∠ВСА, ⇒ ΔАВС равнобедренный, АВ = ВС = 15 см.
Отрезки, отсекаемые высотами равнобедренной трапеции на нижнем основании, равны полуразности оснований:
АН = (AD - BC) / 2 = (33 - 15)/2 = 9 см.
ΔАВН: ∠АНВ = 90°, по теореме Пифагора:
ВН = √(АВ² - АН²) = √(15² - 9²) = √144 = 12 см
Sabcd = (AD + BC)/2 · BH = (33 + 15)/2 · 12 = 288 см²
Поделитесь своими знаниями, ответьте на вопрос:
Дано: альфа=79°ветта=41°с=10, 6 найти: а, в, гамма
допустим трапеция с основами ВС(15см) и АД(33см), диагональ АС.
Т.к. диагональ делит острый угол (угол А, и т. к. трап. равнобедр. и угол С), то Угол ВАС = углу САД = углу ВСА = углу ДСА из этого выходит: что треугольник ВСА равнобедренный, то есть АВ = ВС = 15см. Проведем высоту ВК и высоту СО, образуем прямоугольник ВКОС, по свойствам прямоугольника ВС=КД, тость по 15см. ЧТобы найти АК и ОД (которые равно, т.к. трапеция равносторонняя) (33-15):2=9см.
По теореме пифагора найдем (в треугольнике АВК) катет ВК(высоту): (на клаве нет корня и квадрата, поэтому реши сам(сама) получится: 12см.
Т.к. площадь трапеции = произведению полсумы основ на высоту, то: ((ВС+АД):2)и все это умножить на ВК (высоту)= ((15+33):2)*12